Litekoo's Post

Litekoo
Litekoo
10 May 2024
신호등, Sine & Cosine
신호등, Sine, Cosine
Angle
(내가 가고자 하는 시선) - (신호등을 보는 시선)
Sine projection ::
(내가 바라보는 시선에서) 신호등의 높이
Cosine projection::
(내가 바라보는 시선으로) 신호등까지 거리
강의 토픽
Degrees vs Radians
삼각 함수와 각도의 측정
Sine & Cosine projection 과 오른손의 법칙
Law of Sine & Cosine
Amplitude, Frequency and Phase
Sine, Cosine 함수의 각의 합과 차
역함수 (arc-function)
Cartesian & Polar Coordinates
-- 복소수 평면
Degrees vs Radians
A(θ) =
πr
2
θ
2
π
=
θr
2
 
2
θ
2
IF
r
= 1
area
angle
 
(
θ
)
=
θ
2
각도 θ = 단위원에서 각 θ 의 면적
θ
2
Why use Radians rather than Degrees?
  • ‌특별한 단위가 있는 측정값
  • 수학에서 길이는 일반적으로 사용하는 양임
  •  Radian 은 단위 원에서 각도에 비례하는 길이
L
(
θ
)
=
2
πr
θ
2
π
=
θr
→ angle θ =
length
arc
(
θ
)
IF
r
= 1
각도 θ = 단위원에서 각도 θ 원호의 길이 θ
r = 1 → 원둘레 = 2π ⇔ 각도하고 항상 비례
360[deg] = 2π [rad]
π =
180
o
,
π
2
=
90
o
⇒ 각도를 실수
Deg → Rad :
Deg
360
2π =
Deg
180
× π
[rad]
Rad → Deg ::
Rad
 
π
× 180[deg]
회전하는 모든 것은 Sine, Cosine 값을 발생시킴
원반 돌리기와 Sine & Cosine
기본 삼각함수
sin
(
θ
)
=
adj
hyp
,
cos
(
θ
)
=
opp
hyp
tan
(
θ
)
=
opp
adj
=
sin
(
θ
)
cos
(
θ
)
-- Reciprocal functions
sin(θ)∙csc(θ) = 1, cos(θ)∙csc(θ) =1, tan(θ)∙cot(θ) = 1
csc(θ) =
1
sin
(
θ
)
, sec(θ) =
1
cos
(
θ
)
, cot(θ) =
1
tan
(
θ
)
도형의 내각 합: (n-2)×180
삼각형: 180, 사각형: 360, 오각형: 540 --- 180 도식 증가
기본 삼각 함수 모양
기본 삼각형 각도와 길이
sin
(
π
4
)
=
1
2
=
cos
(
π
4
)
,
tan
(
π
4
)
= 1
sin
(
π
6
)
=
1
2
=
cos
(
π
3
)
,
cos
(
π
6
)
=
3
 
2
=
sin
(
π
3
)
,
tan
(
π
6
)
=
1
3
,
tan
(
π
3
)
=
1
2
각도의 측정
-- anti-clockwise angle → positive
-- clockwise → negative
Sine projection
sin (π−θ) = sin(θ)

b 의 a 에 대한 높이, 각은 항상 a → b 로 측정
height = ‖b‖
sin
(
θ
)
시선의 왼쪽(반시계) 방향이면 positive
시선의 오른쪽(시계) 방향이면 negative
평형이면 : 0
오른손의 법칙
Sine projection 을 적용
Right Screw Rule
Cosine projection
cos(−θ) = cos(θ)
View point 에서 b 의 a 에 비친 그림자의 길이 ; length = ‖b‖
cos
(
θ
)
θ
<
90
o
:
 
b
a
와 같은 방향 (acute) → positive
θ =
90
o
: a 와 b 가 직각 → 0
θ >
90
o
: a 와 b 가 반대방향 → negative
삼각형의 기본 특성
Pythagorean equation
c
2
=
a
2
+
b
2
 
Triangle Inequality
a+b > c
삼각형 면적
Area =
1
2
ab
sin
(
θ
)
Law of Sine
"변의 길이와 맞은 각의 비는 같다"
a
sin
(
α
)
=
b
sin
(
β
)
=
c
sin
(
γ
)
= d
밑변이 같으면 원의 내접하는 삼각형의 맞은 각은 같음
sin γ = sin δ
sin γ =
c
d
⇒ d =
c
sin
(
γ
)
Inscribed angle 은 중심각의 2 배임
Law of Cosine
Scalar product 에서 사용:
a
 
 
b
=
a
 
b
 
cos
(
γ
)
c
2
=
a
2
+
b
2
− 2
ab
 
cos
(
γ
)
(proof for acute triangle)
c
2
=
(
b
 
 
a
 
cos
 
γ
)
2
+
(
a
 
sin
 
γ
)
2
=
b
2
2
ab
 
cos
 
γ
+
a
2
cos
2
γ +
a
2
sin
2
γ
=
b
2
2
ab
 
cos
 
γ
+
a
2
(
cos
2
 
γ
 
+
 
sin
2
 
γ
)
=
a
2
+
b
2
2
ab
 
cos
 
γ
-- (벡터 상식 비디오 참고)
-- 둔각 삼각형에 대한 증명해 보세요
삼각함수의 항등식
삼각함수의 지수 표현
sin
2
 x
=
(
sin
 
x
)
2
=
sin
2
(
x
)
=
(
sin
(
x
)
)
2
 
cos
2
 
x
 = 
(
cos
 
x
)
2
 = cos
2
(
x
)
=
(
cos
(
x
)
)
2
tan
2
 x
=
 
(
tan
 
x
)
2
  = tan
2
(
x
)
=
(
tan
(
x
)
)
2
 
sin
2
(
x
)
+
cos
2
(
x
)
= 1
 
sin
2
(
x
)
= 1 −
cos
2
(
x
)
 
cos
2
(
x
)
= 1 −
sin
2
(
x
)
1 +
tan
2
(
x
)
=
csc
2
(
x
)
=
1
sin
2
 
(
x
)
cot
2
(
x
)
+ 1 =
sec
2
(
x
)
=
1
cos
2
 
(
x
)
삼각함수의 변형
y = AmplitudeA sin( FrequencyF (x − Phase) ) + TranslateY
g‌
(
x
)
=
A
sin
(
 f‌
 
(
x
 
 
ϕ
)
)
+
b
, wavelength λ =
1
f
Amplitude, Frequency and Period
y = AmplitudeA sin( FrequencyF (x − Phase) ) + TranslateY
y = A sin( F (x− P ) ) + Y --- Period [time] or Wavelength [meter] = 1/Frequency
y = 2 sin( 4 (x − 0.5) ) + 3
-- Amplitude: 2, Frequency: 4, Period =
2
π
4
=
π
2
, Phase: 0.5
Sine, Cosine 각의 합과 차
sin
(
a
+
b
)
=
sin
(
a
)
cos
(
b
)
+
cos
(
a
)
sin
(
b
)
sin
(
a
 
 
b
)
=
sin
(
a
)
cos
(
b
)
cos
(
a
)
sin
(
b
)
cos
(
a
+
b
)
=
cos
(
a
)
cos
(
b
)
sin
(
a
)
sin
(
b
)
cos
(
a
b
)
=
cos
(
a
)
cos
(
b
)
+
sin
(
a
)
sin
(
b
)
sin
(
2
a
)
=
 sin
(
a
+
a
)
= 2
sin
(
a
)
cos
(
a
)
cos
(
2
a
)
=
cos
(
a
+
a
)
=
cos
2
(
a
)
sin
2
(
a
)
= 2
cos
2
(
a
)
− 1 ---
sin
2
(
a
)
= 1 −
cos
2
(
a
)
= 1 − 2
sin
2
(
a
)
tan
(
2
a
)
=
sin
(
2
a
)
cos
(
2
a
)
=
2
 
sin
(
a
)
 
cos
(
a
)
 
cos
2
 
(
a
)
 
 
sin
2
 
(
a
)
=
2
 
tan
(
a
)
 
1
 
 
tan
2
 
(
a
)
--- divide by
cos
2
(
a
)
Sine inverse (arc) functions: arcsin(x) or
sin
-
1
(
x
)
arcsin
(
x
)
=
sin
1
(
x
)
= θ :: "Sine 값으로 그 각도을 찾아내는 함수"
Cosine inverse (arc) functions: arccos(x)
arccos
(
x
)
=
cos
-
1
(
x
)
= θ
Tangent Inverse (Arc) Functions : arctan(x)
arctan
(
x
)
=
tan
-
1
(
x
)
= θ
Cartesian - Polar Coordinates
Cartesian - Poloar coordinates
Cartesian to Polar:
r
=
x
2
 
+
 
y
2
,
 tan
(
θ
)
=
y
x
→ θ =
arctan
(
y
x
)
Polar to Cartesian:
x
=
r
cos
(
θ
)
,
y
=
r
sin
(
θ
)
복소수 평면
e
i
0
= 1,
 
e
i
 
π
2
=
i
,
 
e
= cos π + i sin π = −1 →
e
+1 = 0
 
 e
i
3
2
 
π
= −1
Basis vectors: Re =
1
,
0
, Im =
0
,
i
span(Re, Im) = "복소수 평면" (벡터 상식 강의 참조)
e
= cos φ +
i
 
sin
 
φ
-- Euler Formula , φ : "fee"
r
 
e
=
r
 (
cos
 
φ
 
+
 
i
 
sin
 
φ
)
-- 스칼라곱
r
1
e
i
θ
1
+
r
2
e
i
θ
2
=
r
1
(
cos
 
θ
1
 
+
 
i
 
sin
 
θ
1
)
+
r
2
(
cos
 
θ
2
 
+
 
i
 
sin
 
θ
2
)
=
(
r
1
 
cos
 
θ
1
 
+
 
r
2
 
cos
 
θ
2
)
+
(
r
1
 
sin
 
θ
1
 
+
 
r
2
 
sin
 
θ
2
)
-- 벡터 더하기
→ 복소수 평면: Exp 함수로 나타낸 선형공간
e
i
0
= 1,
e
i
 
π
2
=
i
,
e
= cos π + i sin π = −1 →
e
+1 = 0,
e
i
3
2
 
π
= −1
복소수 평면
Cartesian form:
z = a + b
i
Polar form
z = r cos(θ) +
i
r sin(θ), ---
r
=
a
2
 
+
 
b
2
, argument θ, modulus
r
=
r
e
If w =
R
e
zw =
r
e
R
e
=
rR
e
i
(
θ
+
ϕ
)
=
rR
cos
(
θ
+
ϕ
)
 
+
 
i
 
sin
(
θ
+
ϕ
)
z
w
=
r
 
e
 
R
 
e
=
r
R
e
i
(
θ
+
ϕ
)
 
=
r
R
(
cos
(
θ
+
ϕ
)
 
+
 
i
 
sin
(
θ
+
ϕ
)
)
z
n
=
r
n
(
cos
(
)
 
+
 
i
 
sin
(
)
)
⇒ What is "Euler number" e ?
복소수 평면
오일러의 Sine, Cosine, 지수함수의 관계
(Euler Formula)
 
e
= cos φ +
i
 
sin
 
φ
e
i
0
= 1
e
i
 
π
2
=
i
,
 
e
= cos π + i sin π = −1
e
+1 = 0
 e
i
3
2
 
π
= −1
강의 내용
복소수 평면 : Exp 함수로 나타낸 선형공간
오일러 공식이 왜 성립하나?
오일러 수 e ?
Tyler series & MacLaurin series
e
x
의 미분과
e
x
의 다항식 전개
복리 계산
지수증가, 로지스틱 증가
박테리아 증식
지수감소
커피온도 냉각 Newton's Law of Cooling
복소수 평면
복소수 평면
e
i
0
= 1,
e
i
 
π
2
=
i
,
 
e
= cos π + i sin π = −1 →
e
+1 = 0,
 e
i
3
2
 
π
= −1
Basis vectors: Re =
1
,
0
, Im =
0
,
i
span(Re, Im) = "복소수 평면" (벡터 상식 강의 참조)
e
= cos φ +
i
 
sin
 
φ
-- Euler Formula , φ : "fee"
r
 
e
=
r
 (
cos
 
φ
 
+
 
i
 
sin
 
φ
)
-- 스칼라곱
r
1
e
i
θ
1
+
r
2
e
i
θ
2
=
r
1
(
cos
 
θ
1
 
+
 
i
 
sin
 
θ
1
)
+
r
2
(
cos
 
θ
2
 
+
 
i
 
sin
 
θ
2
)
=
(
r
1
 
cos
 
θ
1
 
+
 
r
2
 
cos
 
θ
2
)
+
(
r
1
 
sin
 
θ
1
 
+
 
r
2
 
sin
 
θ
2
)
-- 벡터 더하기
→ 복소수 평면: Exp 함수로 나타낸 선형공간
e
i
0
= 1,
e
i
 
π
2
=
i
,
e
= cos π + i sin π = −1 →
e
+1 = 0,
e
i
3
2
 
π
= −1
복소수
Cartesian form:
z = a + b
i
Polar form
z = r cos(θ) +
i
r sin(θ), ---
r
=
a
2
 
+
 
b
2
, argument θ, modulus
r
=
r
e
If w =
R
e
zw =
r
e
R
e
=
rR
e
i
(
θ
+
ϕ
)
=
rR
cos
(
θ
+
ϕ
)
 
+
 
i
 
sin
(
θ
+
ϕ
)
z
w
=
r
 
e
 
R
 
e
=
r
R
e
i
(
θ
+
ϕ
)
 
=
r
R
(
cos
(
θ
+
ϕ
)
 
+
 
i
 
sin
(
θ
+
ϕ
)
)
z
n
=
r
n
(
cos
(
)
 
+
 
i
 
sin
(
)
)
오일러 공식이 왜 성립하나?
"오일러 공식"
e
ix
=
cos
 
x
 
+
 
i
 
sin
 
x
이 성립하나?
f
(
x
)
=
cos
 
x
 
+
 
i
 
sin
 
x
 
e
ix
=
e
ix
(
cos
 
x
 
+
 
i
 
sin
 
x
)
, x ∈ ℝ
d
dx
f
(
x
)
=
i
 
e
-
ix
(
cos
 
x
 
+
 
i
 
sin
 
x
)
+
e
-
ix
(
-
 
sin
 
x
 
+
 
i
 
cos
 
x
)
=
e
-
ix
(
i
 
cos
 
x
 
+
 
i
2
 
sin
 
x
)
+
e
-
ix
(
i
 
cos
 
x
 
-
 
sin
 
x
)
= 0 ⇒
f
(
x
)
= constant
f
(
0
)
= 1
f
(
x
)
= 1
f
(
x
)
=
e
ix
(
cos
 
x
 
+
 
i
 
sin
 
x
)
= 1 ←
f
(
0
)
= 1 ⇒
f
(
x
)
= 1
 
e
ix
=
cos
 
x
 
+
 
i
 
sin
 
x
"Euler number" e 는?
1 =
e
1
1
x
dx
= ln(e)
ln
(
x
)
=
x
1
1
x
dx
ln
(
x
x
0
)
=
x
x
0
1
x
dx
ln
(
xy
)
=
ln
(
x
)
+
ln
(
y
)
,
ln
(
x
)
=
ln
(
yx
1
)
=
ln
(
y
)
ln
(
x
)
e = 1 +
1
1
+
1
1
2
+
1
1
2
3
+ ⋯ =
n
=
0
1
n
ǃ
= 2.7xx
e = exp(1)
e
x
exp
(
x
)
- 지수함수
a
x
중에 x=0 에서 접선의 기울기가 1 인 유일한 함수가
e
x
함수 f(x) 의 x = a 에서 다항식 전개: Tyler series
x = a 에서
f
(
x
)
함수의 다항식 전개
ln(x) 의 다항식 근사 과정
Tyler Series 조건: x = a 에서
f
(
x
)
는 미분가능해야 함
  f
(
x
)
=
f
(
a
)
+
f
 
'
 
(
a
)
 
1
ǃ
(
x
 
 
a
)
+
f
 
''
(a) 
2
ǃ
(
x
a
)
2
+
f
 
'''
 
(
a
)
 
3
ǃ
(
x
a
)
3
+ ⋯
=
n
=
0
f
(
n
)
 
(
a
)
 
n
ǃ
(
x
a
)
n
, ←
f
(
0
)
(
a
)
=
f
(
a
)
, 0ǃ = 1,
(
x
-
a
)
0
= 1
함수 f(x) 의 x = 0 에서 다항식 전개: MacLaurin series
Maclaurin series 라고 함
f
(
x
)
=
f
(
0
)
+
f
 
'
(
0
)
1
ǃ
x
+
f
''
(
0
)
2
ǃ
x
2
+
f
 
'''
(
0
)
3
ǃ
x
3
+ ⋯
=
a
0
+
a
1
x
+
a
2
x
2
+
a
3
x
3
+ ⋯
Polynomial function space with the basis:
{[1,0,0,‥], [0,
x
,0,0,‥], [0,0,
x
2
,0,‥], [0,0,0,
x
3
,0,‥], ⋯}
⇒ 어떤 미분가능한 함수도 다항식 공간의 벡터로 표현할 수 있음
e
x
= 1 +
x
1
ǃ
+
x
2
 
2
ǃ
+
x
3
 
3
ǃ
+ ⋯
함수
e
x
의 미분함수
image.png
다항식 전개를 위해서는 미분가능해야 함
지수함수
a
x
의 미분
d
dx
 
a
x
=
lim
h
0
a
x
+
h
 
-
 
a
x
 
h
=
lim
h
0
a
x
 
a
h
 
-
 
a
x
 
h
=
lim
h
0
a
x
 
(
a
h
 
 
1
)
 
h
=
a
x
lim
h
0
a
h
 
 
1
 
h
, 여기서
lim
h
0
a
h
 
1
h
=
ln
 
a
=
a
x
ln
 
a
d
dx
e
x
=
e
x
ln
e
=
e
x
← 미분함수와 원래함수와 같음
함수
e
x
의 미분함수
lim
h
0
a
h
 
1
 
h
=??=
ln
(
a
)
f
(
h
)
=
a
h
 
1
h
라 두면
lim
h
0
f
(
h
)
=??=
ln
(
a
)
f
(
h
)
=
e
ln
(
a
)
1
h
a
h
=
e
ln
 
a
h
=
e
h
 
ln
(
a
)
f
(
x‌
)
=
e
x
 
1
 
x
ln
(
a
)
x
=
h
 
ln
(
a
)
로 두면 ,
h
=
x
ln
(
a
)
이고 h→0 이면 x→0
lim
h
0
f
(
h
)
=
lim
x
0
f
(
x
)
=
ln
(
a
)
lim
x
0
e
x
 
1
 
x
←로피탈 룰:
lim
x
c
f(x)/
f
(
x
)
=
lim
x
c
f'(x)/g'(x)
=
ln
(
a
)
lim
x
0
 
d
dx
 
(
e
x
 
1
)
 
d
dx
 
x
  = 
ln
(
a
)
 
lim
x
0
 
e
x
 
1
  = 
ln
(
a
)
  1 
=
ln
(
a
)
함수
e
x
의 다항식 전개
Polynomial expansion of Exp function
e
x
(Maclaurin/Tyler series)
e
x
= 1 +
x
1
ǃ
+
x
2
 
2
ǃ
+
x
3
 
3
ǃ
+ ⋯ =
n
=
0
x
n
 
n
ǃ
e
1
= e = 1 +
1
 
1
ǃ
+
1
2
ǃ
+
1
3
ǃ
+ ⋯ =
n
==
0
1
n
ǃ
= 2.7xx
Inverse function of
f
(
x
)
:
f
1
(
x
)
f
-
1
f
(
x
)
 )
=
x
Inverse function of
e
x
: ln(x)
g(x) =
e
ln
(
g
(
x
)
)
-- where,
g
(
x
)
> 0
g
(
x
)
=
a
x
=
e
ln
(
a
x
)
=
e
x
ln
(
)
ln
(
e
f
(
x
)
)
=
f
(
x
)
ln
(
e
)
=
f
(
x
)
함수
e
x
의 다항식 전개
d
dx
cos
(
x
)
= −
sin
(
x
)
,
d
dx
sin
(
x
)
=
cos
(
x
)
d
dx
x
n
=
n
 
x
(
n
1
)
 
e
ix
= 1 +
ix
1
ǃ
+
(ix)
2
 
2
ǃ
+
(ix)
3
 
3
ǃ
+ ⋯ =
d
dx
e
ix
= 1 +
i x
1
ǃ
x
2
 
2
ǃ
i
 
x
3
 
3
ǃ
+
x
4
 
4
ǃ
+
i
 
x
5
 
5
ǃ
+ ⋯
= ( 1 −
x
2
 
2
ǃ
+
x
 
ǃ
− ⋯ ) +
i
(
x
x
3
 
3
ǃ
+
x
5
 
5
ǃ
− ⋯ )
 
e
ix
=
cos
(
x
)
+
i
sin
(
x
)
"다항식 전개에 오일러 식 "
e
x
= ?? =
lim
n
(
1
+
x
n
)
n
e
x
= ?? =
lim
n
(
1
+
x
n
)
n
 
let
f
(
n
)
=
(
1
 
+
 
x
n
)
n
, then
lim
n
f
(
n
)
=
e
x
ln
(
f
(
n
)
)
= ln
(
1
+
x
n
)
n
=
n
ln
(
1
+
x
n
)
 
=
ln
(
1
+
x
n
)
 
1
n
0
0
as n→∞
lim
n
ln
(
f
(
n
)
)
= ln [
lim
n
x
( n
2
+
xn
 ) 
 
1
n
2
] =
x
d
dn
ln
(
1
+
x
n
)
=
1
(
1
+
x
n
)
d
dn
(
1
 
+
 
x
n
)
=
1
(
1
+
x
n
)
x
n
2
=
x
 
n
2
 
+
 
xn
lim
n
f
(
n
)
=
e
x
=
lim
n
(
1
+
 
x
n
)
n
‌ 
f(n) =
(
1
+
1
n
)
n
 
f(1) =
 
(
1
 
+
 
1
1
)
1
= 2 f(2) =
(
1
+
1
2
)
2
=
(
1
+
1
2
)
(
1
+
1
2
)
= 2.25
f(3) =
(
1
+
1
3
)
3
= 2.37
f(100) =
(
1
+
1
100
)
100
= 2.7048 f(∞) =
(
1
+
1
)
= 2.718xx
팔방미인
e
x
: 변화하는 대부분에 존재
d
dt
(
e
rt
)
=
r
e
rt
d
dt
N
(
t
)
=
 r
 N
(
t
)
--- 증가율/감소율
r
은 그 시점
t
의 총량
e
rt
에 의존함
--- 박테리아가 분당
r
= 10% 증가
10 마리 일때는 1분후에 10*0.1 = 1 마리 증가
50 마리 일때는 1분후에 50*0.1 = 5 마리 증가
(1) 시간 t 후의 복리 총 금액 = 원금 ×
e
(
연간 이자율
 r)
(
연간 
 
t
)
(2) 인구 증가 P(t) = (초기인구
P
0
) ∙
e
(
인구증가율
 
r
)
(
기간
 
t
)
(3) 시간 t 시점의 남은량
f
(
t
)
= (초기량
P
0
) ∙
e
(
감소율
 
k
)
(
기간
 
t
)
(4) 표준 정규 분포 f
(
y‌
)
=
1
2
π
e
1
2
 
y
2
--- x =
y
2
 
eyJjZGVzYyI6IuyLoO2YuOuTsSwgU2luZSAmIENvc2luZSDsi6DtmLjrk7EsIFNpbmUsIENvc2luZSDqsJXsnZgg7Yag7ZS9IERlZ3JlZXMgdnMgUmFkaWFucyDsgrzqsIEg7ZWo7IiY7JmAIOqwgeuPhOydmCDsuKHsoJUgU2luZSAmIENvc2luZSBwcm9qZWN0aW9uIOqzvCDsmKTrpbjshpDsnZgg67KV7LmZIExhdyBvZiBTaW5lICYgQ29zaW5lIEFtcGxpdHVkZSwgRnJlcXVlbmN5IGFuZCBQaGFzZSBTaW5lLCBDb3NpbmUg7ZWo7IiY7J2YIOqwgeydmCDtlanqs7wg7LCoIOyXre2VqOyImCAoYXJjLWZ1bmN0aW9uKSBDYXJ0ZXNpYW4gJiBQb2xhciBDb29yZGluYXRlcyAtLSDrs7XshozsiJgg7Y+J66m0IERlZ3JlZXMgdnMgUmFkaWFucyDtmozsoITtlZjripQg66qo65OgIOqyg+ydgCBTaW5lLCBDb3NpbmUg6rCS7J2EIOuwnOyDneyLnO2CtCDsm5DrsJgg64+M66as6riw7JmAIFNpbmUgJiBDb3NpbmUg6riw67O4IOyCvOqwge2VqOyImCDquLDrs7gg7IK86rCBIO2VqOyImCDrqqjslpEg6riw67O4IOyCvOqwge2YlSDqsIHrj4TsmYAg6ri47J20IOqwgeuPhOydmCDsuKHsoJUgLS0gYW50aS1jbG9ja3dpc2UgYW5nbGUg4oaSIHBvc2l0aXZlIC0tIGNsb2Nrd2lzZSDihpIgbmVnYXRpdmUgXGJTaW5lIHByb2plY3Rpb24gXGLsmKTrpbjshpDsnZgg67KV7LmZIFxiXGJDb3NpbmUgcHJvamVjdGlvbiDsgrzqsIHtmJXsnZgg6riw67O4IO2KueyEsSBcYkxhdyBvZiBTaW5lIFwi67OA7J2YIOq4uOydtOyZgCDrp57snYAg6rCB7J2YIOu5hOuKlCDqsJnri6RcIiA9ID0gPSBkIFxiTGF3IG9mIENvc2luZSBTY2FsYXIgcHJvZHVjdCDsl5DshJwg7IKs7JqpOiA9IC0tIOuRlOqwgSDsgrzqsIHtmJXsl5Ag64yA7ZWcIOymneuqhe2VtCDrs7TshLjsmpQgXGLsgrzqsIHtlajsiJjsnZgg7ZWt65Ox7IudIOyCvOqwge2VqOyImOydmCDrs4DtmJUgeSA9IEFtcGxpdHVkZUEgc2luKCBGcmVxdWVuY3lGICh4IOKIkiBQaGFzZSkgKSArIFRyYW5zbGF0ZVkgPSArICwgd2F2ZWxlbmd0aCDOuyA9IEFtcGxpdHVkZSwgRnJlcXVlbmN5IGFuZCBQZXJpb2QgeSA9IEFtcGxpdHVkZUEgc2luKCBGcmVxdWVuY3lGICh4IOKIkiBQaGFzZSkgKSArIFRyYW5zbGF0ZVkgeSA9IEEgc2luKCBGICh44oiSIFAgKSApICsgWSAtLS0gUGVyaW9kIFt0aW1lXSBvciBXYXZlbGVuZ3RoIFttZXRlcl0gPSAxL0ZyZXF1ZW5jeSB5ID0gMiBzaW4oIDQgKHgg4oiSIDAuNSkgKSArIDMgLS0gQW1wbGl0dWRlOiAyLCBGcmVxdWVuY3k6IDQsIFBlcmlvZCA9ID0gLCBQaGFzZTogMC41IFNpbmUsIENvc2luZSDqsIHsnZgg7ZWp6rO8IOywqCBTaW5lIGludmVyc2UgKGFyYykgZnVuY3Rpb25zOiBhcmNzaW4oeCkgb3IgPSA9IM64IDo6IFwiU2luZSDqsJLsnLzroZwg6re4IOqwgeuPhOydhCDssL7slYTrgrTripQg7ZWo7IiYXCIgQ29zaW5lIGludmVyc2UgKGFyYykgZnVuY3Rpb25zOiBhcmNjb3MoeCkgPSA9IM64IFRhbmdlbnQgSW52ZXJzZSAoQXJjKSBGdW5jdGlvbnMgXGI6IGFyY3Rhbih4KSA9ID0gzrggQ2FydGVzaWFuIC0gUG9sYXIgQ29vcmRpbmF0ZXMgQ2FydGVzaWFuIC0gUG9sb2FyIGNvb3JkaW5hdGVzIENhcnRlc2lhbiB0byBQb2xhcjogPSAsID0g4oaSIM64ID0gUG9sYXIgdG8gQ2FydGVzaWFuOiA9ICwgPSDrs7XshozsiJgg7Y+J66m0IOuzteyGjOyImCDtj4nrqbQgQ2FydGVzaWFuIGZvcm06IHogPSBhICsgYiBQb2xhciBmb3JtIHogPSByIGNvcyjOuCkgKyByIHNpbijOuCksIC0tLSA9ICwgYXJndW1lbnQgzrgsIG1vZHVsdXMgPSBJZiB3ID0gencgPSDiiJkgPSA9ID0gPSA9ICggKSA9IOKHkiBXaGF0IGlzIFwiRXVsZXIgbnVtYmVyXCIgZSA/IOuzteyGjOyImCDtj4nrqbQg6rCV7J2YIOuCtOyaqSDrs7XshozsiJgg7Y+J66m0IDogRXhwIO2VqOyImOuhnCDrgpjtg4Drgrgg7ISg7ZiV6rO16rCEIOyYpOydvOufrCDqs7Xsi53snbQg7JmcIOyEseumve2VmOuCmD8g7Jik7J2865+sIOyImCBlID8gVHlsZXIgc2VyaWVzICYgTWFjTGF1cmluIHNlcmllcyDsnZgg66+467aE6rO8IOydmCDri6Ttla3si50g7KCE6rCcIOuzteumrCDqs4TsgrAg7KeA7IiY7Kad6rCALCDroZzsp4DsiqTti7Eg7Kad6rCAIOuwle2FjOumrOyVhCDspp3si50g7KeA7IiY6rCQ7IaMIOy7pO2UvOyYqOuPhCDrg4nqsIEgTmV3dG9uJ3MgTGF3IG9mIENvb2xpbmcg67O17IaM7IiYIO2PieuptCDrs7XshozsiJgg7Y+J66m0IOuzteyGjOyImCBDYXJ0ZXNpYW4gZm9ybTogeiA9IGEgKyBiIFBvbGFyIGZvcm0geiA9IHIgY29zKM64KSArIHIgc2luKM64KSwgLS0tID0gLCBhcmd1bWVudCDOuCwgbW9kdWx1cyA9IElmIHcgPSB6dyA9IOKImSA9ID0gPSA9ID0gKCApID0g7Jik7J2865+sIOqzteyLneydtCDsmZwg7ISx66a97ZWY64KYPyBcIuyYpOydvOufrCDqs7Xsi51cIiA9IOydtCDshLHrpr3tlZjrgpg/IFwiRXVsZXIgbnVtYmVyXCIgZSDripQ/IFxi7ZWo7IiYIGYoeCkg7J2YIHggPSBhIOyXkOyEnCDri6Ttla3si50g7KCE6rCcOiBUeWxlciBzZXJpZXMgeCA9IGEg7JeQ7IScIO2VqOyImOydmCDri6Ttla3si50g7KCE6rCcIFxi7ZWo7IiYIGYoeCkg7J2YIHggPSAwIOyXkOyEnCDri6Ttla3si50g7KCE6rCcOiBNYWNMYXVyaW4gc2VyaWVzIO2VqOyImCDsnZggXGLrr7jrtoTtlajsiJgg7ZWo7IiYIOydmCBcYuuvuOu2hO2VqOyImCA9Pz89ID0g6528IOuRkOuptCA9Pz89ID0g4oaQID0gPSA9IOKGkCA9IOuhnCDrkZDrqbQgLCA9IOydtOqzoCBo4oaSMCDsnbTrqbQgeOKGkjAgPSA9IOKGkOuhnO2UvO2DiCDro7A6IGYoeCkvIGYnKHgpL2cnKHgpID0gPSDtlajsiJgg7J2YIFxi64uk7ZWt7IudIOyghOqwnCDtlajsiJgg7J2YIFxi64uk7ZWt7IudIOyghOqwnCA9ID8/ID0gPSA/PyA9IO2MlOuwqeuvuOyduCA6IOuzgO2ZlO2VmOuKlCDrjIDrtoDrtoTsl5Ag7KG07J6sID0g4oeUID0gLS0tIOymneqwgOycqC/qsJDshozsnKgg7J2AIOq3uCDsi5zsoJAg7J2YIOy0neufiSDsl5Ag7J2Y7KG07ZWoIC0tLSDrsJXthYzrpqzslYTqsIAg67aE64u5ID0gMTAlIOymneqwgCAxMCDrp4jrpqwg7J2865WM64qUIDHrtoTtm4Tsl5AgMTAqMC4xID0gMSDrp4jrpqwg7Kad6rCAIDUwIOuniOumrCDsnbzrlYzripQgMeu2hO2bhOyXkCA1MCowLjEgPSA1IOuniOumrCDspp3qsIAgKDEpIOyLnOqwhCB0IO2bhOydmCDrs7Xrpqwg7LSdIOq4iOyVoSA9IOybkOq4iCDDlyAoMikg7J246rWsIOymneqwgCBQKHQpID0gKOy0iOq4sOyduOq1rCApIOKImSAoMykg7Iuc6rCEIHQg7Iuc7KCQ7J2YIOuCqOydgOufiSA9ICjstIjquLDrn4kgKSDiiJkgKDQpIO2RnOykgCDsoJXqt5wg67aE7Y+sIGYgPSAtLS0geCA9IEFuZ2xlICjrgrTqsIAg6rCA6rOg7J6QIO2VmOuKlCDsi5zshKApIC0gKOyLoO2YuOuTseydhCDrs7TripQg7Iuc7ISgKSBTaW5lIHByb2plY3Rpb24gOjogKOuCtOqwgCDrsJTrnbzrs7TripQg7Iuc7ISg7JeQ7IScKSDsi6DtmLjrk7HsnZgg64aS7J20IENvc2luZSBwcm9qZWN0aW9uOjogKOuCtOqwgCDrsJTrnbzrs7TripQg7Iuc7ISg7Jy866GcKSDsi6DtmLjrk7HquYzsp4Ag6rGw66asIEEozrgpID0g4oiZID0g4oeSIElGID0gMSDihpIgPSDqsIHrj4QgzrggPSDri6jsnITsm5Dsl5DshJwg6rCBIM64IOydmCDrqbTsoIEgV2h5IHVzZSBSYWRpYW5zIHJhdGhlciB0aGFuIERlZ3JlZXM/IO2KueuzhO2VnCDri6jsnITqsIAg7J6I64qUIOy4oeygleqwkuyImO2VmeyXkOyEnCDquLjsnbTripQg7J2867CY7KCB7Jy866GcIOyCrOyaqe2VmOuKlCDslpHsnoTCoFJhZGlhbiDsnYAg64uo7JyEIOybkOyXkOyEnCDqsIHrj4Tsl5Ag67mE66GA7ZWY64qUIOq4uOydtCA9IOKImSA9IOKGkiBhbmdsZSDOuCA9IElGID0gMSDqsIHrj4QgzrggPSDri6jsnITsm5Dsl5DshJwg6rCB64+EIM64IOybkO2YuOydmCDquLjsnbQgzrggciA9IDEg4oaSIOybkOuRmOugiCA9IDLPgCDih5Qg6rCB64+E7ZWY6rOgIO2VreyDgSDruYTroYAgMzYwW2RlZ10gPSAyz4AgW3JhZF0gz4AgPSAsID0g4oeSIOqwgeuPhOulvCDsi6TsiJggRGVnIOKGkiBSYWQgOiAyz4AgPSDDlyDPgCBbcmFkXSBSYWQg4oaSIERlZyA6OiDDlyAxODBbZGVnXSAsID0gLS0gUmVjaXByb2NhbCBmdW5jdGlvbnMgc2luKM64KeKImWNzYyjOuCkgPSAxLCBjb3Mozrgp4oiZY3NjKM64KSA9MSwgdGFuKM64KeKImWNvdCjOuCkgPSAxIGNzYyjOuCkgPSAsIHNlYyjOuCkgPSAsIGNvdCjOuCkgPSDrj4TtmJXsnZgg64K06rCBIO2VqTogKG4tMinDlzE4MCDsgrzqsIHtmJU6IDE4MCwg7IKs6rCB7ZiVOiAzNjAsIOyYpOqwge2YlTogNTQwIC0tLSAxODAg64+E7IudIOymneqwgCA9ID0gLCA9IDEgPSA9ICwgPSA9ICwgPSAsID0gc2luICjPgOKIks64KSA9IHNpbijOuCkgXGIgXGJiIOydmCBhIOyXkCDrjIDtlZwg64aS7J20LCDqsIHsnYAg7ZWt7IOBIGEg4oaSIGIg66GcIOy4oeyglSBoZWlnaHQgPSDigJZi4oCWIOyLnOyEoOydmCDsmbzsqr0o67CY7Iuc6rOEKSDrsKntlqXsnbTrqbQgcG9zaXRpdmUg7Iuc7ISg7J2YIOyYpOuluOyqvSjsi5zqs4QpIOuwqe2WpeydtOuptCBuZWdhdGl2ZSDtj4ntmJXsnbTrqbQgOiAwIFNpbmUgcHJvamVjdGlvbiDsnYQg7KCB7JqpIFJpZ2h0IFNjcmV3IFJ1bGUgY29zKOKIks64KSA9IGNvcyjOuCkgVmlldyBwb2ludCDsl5DshJwgYiDsnZggYSDsl5Ag67mE7LmcIOq3uOumvOyekOydmCDquLjsnbQgOyBcYmxlbmd0aCA9IOKAlmLigJYgOiDqsIAg7JmAIOqwmeydgCDrsKntlqUgKGFjdXRlKSDihpIgcG9zaXRpdmUgzrggPSA6IGEg7JmAIGIg6rCAIOyngeqwgSDihpIgMCDOuCA+IDogYSDsmYAgYiDqsIAg67CY64yA67Cp7ZalIOKGkiBuZWdhdGl2ZSBQeXRoYWdvcmVhbiBlcXVhdGlvbiA9ICsgVHJpYW5nbGUgSW5lcXVhbGl0eSBhK2IgPiBjIOyCvOqwge2YlSDrqbTsoIEgQXJlYSA9IOuwkeuzgOydtCDqsJnsnLzrqbQg7JuQ7J2YIOuCtOygke2VmOuKlCDsgrzqsIHtmJXsnZgg66ee7J2AIOqwgeydgCDqsJnsnYwgc2luIM6zID0gc2luIM60IHNpbiDOsyA9IOKHkiBkID0gSW5zY3JpYmVkIGFuZ2xlIOydgCDspJHsi6zqsIHsnZggMiDrsLDsnoQgPSArIChwcm9vZiBmb3IgYWN1dGUgdHJpYW5nbGUpID0gKyA9IOKIkiArIM6zICsgzrMgPSDiiJIgKyA9ICsg4oiSIC0tICjrsqHthLAg7IOB7IudIOu5hOuUlOyYpCDssLjqs6ApIOyCvOqwge2VqOyImOydmCDsp4DsiJgg7ZGc7ZiEID0gPSA9ID0gPSA9ICsgPSAxID0gMSDiiJIgPSAxIOKIkiAxICsgPSA9ICsgMSA9ID0gPSArID0g4oiSID0g4oiSID0gKyA9ID0gMiA9ID0g4oiSID0gMiDiiJIgMSAtLS0gPSAxIOKIkiA9IDEg4oiSIDIgPSA9ID0gLS0tIGRpdmlkZSBieSA9IDEsID0gLCA9IGNvcyDPgCArIGkgc2luIM+AID0g4oiSMSDihpIgKzEgPSAwID0g4oiSMSBCYXNpcyB2ZWN0b3JzOiBSZSA9ICwgSW0gPSBzcGFuKFJlLCBJbSkgPSBcIuuzteyGjOyImCDtj4nrqbRcIiAo67Kh7YSwIOyDgeyLnSDqsJXsnZgg7LC47KGwKSA9IGNvcyDPhiArIC0tIEV1bGVyIEZvcm11bGEgLCDPhiA6IFwiZmVlXCIg4oaSID0gLS0g7Iqk7Lm865286rOxIOKGkiArID0gKyA9ICsgLS0g67Kh7YSwIOuNlO2VmOq4sCDihpIg67O17IaM7IiYIO2PieuptDogRXhwIO2VqOyImOuhnCDrgpjtg4Drgrgg7ISg7ZiV6rO16rCEID0gMSwgPSAsID0gY29zIM+AICsgaSBzaW4gz4AgPSDiiJIxIOKGkiArMSA9IDAsID0g4oiSMSDsmKTsnbzrn6zsnZggU2luZSwgQ29zaW5lLCDsp4DsiJjtlajsiJjsnZgg6rSA6rOEIChFdWxlciBGb3JtdWxhKSA9IGNvcyDPhiArID0gMSA9ICwgPSBjb3Mgz4AgKyBpIHNpbiDPgCA9IOKIkjEg4oaSICsxID0gMCA9IOKIkjEgPSAxLCA9ICwgPSBjb3Mgz4AgKyBpIHNpbiDPgCA9IOKIkjEg4oaSICsxID0gMCwgPSDiiJIxIEJhc2lzIHZlY3RvcnM6IFJlID0gLCBJbSA9IHNwYW4oUmUsIEltKSA9IFwi67O17IaM7IiYIO2PieuptFwiICjrsqHthLAg7IOB7IudIOqwleydmCDssLjsobApID0gY29zIM+GICsgLS0gRXVsZXIgRm9ybXVsYSAsIM+GIDogXCJmZWVcIiDihpIgPSAtLSDsiqTsubzrnbzqs7Eg4oaSICsgPSArID0gKyAtLSDrsqHthLAg642U7ZWY6riwIOKGkiDrs7XshozsiJgg7Y+J66m0OiBFeHAg7ZWo7IiY66GcIOuCmO2DgOuCuCDshKDtmJXqs7XqsIQgPSAxLCA9ICwgPSBjb3Mgz4AgKyBpIHNpbiDPgCA9IOKIkjEg4oaSICsxID0gMCwgPSDiiJIxID0gPSAsIHgg4oiIIOKEnSA9ICsgPSArID0gMCDih5IgPSBjb25zdGFudCDiiLQgPSAxIOKHkiA9IDEgPSA9IDEg4oaQID0gMSDih5IgPSAxIOKHkiA9IDEgPSA9IGxuKGUpIOKGkiA9ID0gKyAsID0gPSDiiJIgZSA9IDEgKyArICsgKyDii68gPSA9IDIuN3h4IGUgPSBleHAoMSkg4oaQIOKJnSAtIOyngOyImO2VqOyImCDspJHsl5AgeD0wIOyXkOyEnCDsoJHshKDsnZgg6riw7Jq46riw6rCAIDEg7J24IOycoOydvO2VnCDtlajsiJjqsIAgbG4oeCkg7J2YIOuLpO2VreyLnSDqt7zsgqwg6rO87KCVIFR5bGVyIFNlcmllcyDsobDqsbQ6IHggPSBhIOyXkOyEnCDripQg66+467aE6rCA64ql7ZW07JW8IO2VqCA9ICsgKyArICsg4ouvID0gLCDihpAgPSAsIDDHgyA9IDEsID0gMSBNYWNsYXVyaW4gc2VyaWVzIOudvOqzoCDtlaggPSArICsgKyArIOKLryA9ICsgKyArICsg4ouvIFBvbHlub21pYWwgZnVuY3Rpb24gc3BhY2Ugd2l0aCB0aGUgYmFzaXM6IHtbMSwwLDAs4oClXSwgWzAsICwwLDAs4oClXSwgWzAsMCwgLDAs4oClXSwgWzAsMCwwLCAsMCzigKVdLCDii699IOKHkiDslrTrlqQg66+467aE6rCA64ql7ZWcIO2VqOyImOuPhCDri6Ttla3si50g6rO16rCE7J2YIOuyoe2EsOuhnCDtkZztmITtlaAg7IiYIOyeiOydjCA9IDEgKyArICsgKyDii68g64uk7ZWt7IudIOyghOqwnOulvCDsnITtlbTshJzripQg66+467aE6rCA64ql7ZW07JW8IO2VqCDsp4DsiJjtlajsiJgg7J2YIOuvuOu2hCA9ID0gPSA9ICwg7Jes6riw7IScID0gPSBsbiA9IOKGkCDrr7jrtoTtlajsiJjsmYAg7JuQ656Y7ZWo7IiY7JmAIOqwmeydjCBQb2x5bm9taWFsIGV4cGFuc2lvbiBvZiBFeHAgZnVuY3Rpb24gKE1hY2xhdXJpbi9UeWxlciBzZXJpZXMpID0gMSArICsgKyArIOKLryA9ID0gZSA9IDEgKyArICsgKyDii68gPSA9IDIuN3h4IEludmVyc2UgZnVuY3Rpb24gb2Yg4oeSID0gSW52ZXJzZSBmdW5jdGlvbiBvZiA6IGxuKHgpIGcoeCkgPSAtLSB3aGVyZSwgPiAwID0gPSA9ID0gPSDiiJIgLCA9IOKGkCA9ID0gMSArICsgKyArIOKLryA9ID0gMSArIOKIkiDiiJIgKyArICsg4ouvID0gKCAxIOKIkiArIOKIkiDii68gKSArICgg4oiSICsg4oiSIOKLryApID0gKyBcIuuLpO2VreyLnSDsoITqsJzsl5Ag7Jik7J2865+sIOyLnSBcIiBsZXQgPSAsIHRoZW4gPSA9IGxuID0gPSDihpAgYXMgbuKGkuKIniA9IGxuIFsgXSA9IOKGkCA9ID0g4oiZID0g4oeSID0gPSBmKG4pID0gZigxKSA9ID0gMiBmKDIpID0gPSA9IDIuMjUgZigzKSA9ID0gMi4zNyBmKDEwMCkgPSA9IDIuNzA0OCBmKOKInikgPSA9IDIuNzE4eHgiLCJtaWNvbiI6Imh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC81LzQvMTcxNDg0Njc5ODY5Ni1pbWFnZS5wbmciLCJtaWNvbnRhZ3N0ciI6IjxpbWcgc3JjPVwiaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzUvNC8xNzE0ODQ2Nzk4Njk2LWltYWdlLnBuZ1wiIHN0eWxlPVwib2JqZWN0LWZpdDogY292ZXI7IHdpZHRoOiAxMDAlOyBoZWlnaHQ6IDEwMCU7IGJvcmRlcjogMnB4IHNvbGlkIGdyZXk7XCI+IiwiaW1ncyI6Imh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC81LzQvMTcxNDg0MTQ3OTk4Ny1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzUvNC8xNzE0ODQxODIwNzUyLWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNS80LzE3MTQ4NDMxNjM1NzYtaW1hZ2UucG5nLGh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC81LzQvMTcxNDg0MzI3MzM3NS1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjkvMTcxNDQxMTYxNjkxNS1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzUvNy8xNzE1MTAxMTc3MTE0LWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNS82LzE3MTUwMjczMjEzOTItaW1hZ2UucG5nLGh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC81LzYvMTcxNTAyNzA0OTk5MC1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzUvNi8xNzE1MDI3MTc4OTQ2LWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNC8zMC8xNzE0NTE0NzA0Mzg1LWltYWdlLnBuZyxodHRwczovLzJpbWcubmV0L2gvczI2LnBvc3RpbWcuY2MvOWtsZmgyMjRwLzEwMDAwMC5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjQvMTcxNDAwODYzNTgzNi1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjkvMTcxNDQ0MjIwNDM1NC1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzUvNi8xNzE1MDE2MzI0NDA1LWltYWdlLnBuZyxodHRwczovL3FwaC5jZjIucXVvcmFjZG4ubmV0L21haW4tcWltZy1jMzM4NzQwYjY0YjRjZDk1ZDQyNGYyZTZiOGVjNTQ5ZCxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNC8yNC8xNzE0MDA4MzIzOTg2LWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNC8zMC8xNzE0NTE5NzI4MDM2LWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNC8zMC8xNzE0NTE1MjE3ODA4LWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNC8yNC8xNzE0MDAzNDY2MjIzLWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNS82LzE3MTUwMjg3MjI3OTktaW1hZ2UucG5nLGh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC80LzI0LzE3MTQwMDQ5MTUxMTItaW1hZ2UucG5nLGh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC80LzI5LzE3MTQ0MzE4Nzc1MjEtaW1hZ2UucG5nLGh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC80LzMwLzE3MTQ1MjE1NzY0MzQtaW1hZ2UucG5nLGh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC80LzI5LzE3MTQ0MzYwMzM4MzEtaW1hZ2UucG5nLGh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC81LzQvMTcxNDg0NDgxOTk1OS1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjkvMTcxNDQxMjU2NzM5MC1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjkvMTcxNDQzODMwOTI2OC1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjkvMTcxNDQxMjczNTczOC1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjkvMTcxNDQzODM4ODMyMy1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjkvMTcxNDQxMjkwMzg1Mi1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjkvMTcxNDQzODYyODA2OC1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjQvMTcxMzk3ODEwNTA1MS1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjQvMTcxMzk3ODEwNTA1MS1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjQvMTcxMzk3ODEwNTA1MS1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzUvNC8xNzE0ODQ1NjkxMjE3LWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNC8yNi8xNzE0MTUxNTU4MzgwLWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNC8yNS8xNzE0MDYwNTA1OTc1LWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNC8yNS8xNzE0MDkzMDQyMTE1LWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNC8yNS8xNzE0MDkzMjY4Njk3LWltYWdlLnBuZyxodHRwczovL2tvb2RvY3MuY29tL3VzZXIvbGl0ZWtvb2cvX2Rib3gvZHJvcGZpbGVzLzIwMjQvNS80LzE3MTQ4NDYwMjIxNTktaW1hZ2UucG5nLGh0dHBzOi8va29vZG9jcy5jb20vdXNlci9saXRla29vZy9fZGJveC9kcm9wZmlsZXMvMjAyNC81LzQvMTcxNDg0NTk0NjAzNy1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzQvMjYvMTcxNDE1MDU4MTgzOS1pbWFnZS5wbmcsaHR0cHM6Ly9rb29kb2NzLmNvbS91c2VyL2xpdGVrb29nL19kYm94L2Ryb3BmaWxlcy8yMDI0LzUvNC8xNzE0ODQ2Nzk4Njk2LWltYWdlLnBuZyJ9